SFF501G – SFF508G

Taiwan Semiconductor

5A, 50V - 600V Super Fast Rectifier

FEATURES

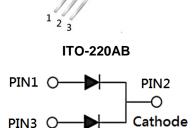
TAIWAN

• AEC-Q101 qualified available

SEMICONDUCTOR

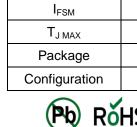
- High efficiency, low V_F
- High current capability
- High surge current capability
- Low power loss
- UL Recognized File # E-326243
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

APPLICATIONS


- DC to DC converter
- Switching mode converters and inverters
- Freewheeling application

MECHANICAL DATA

- Case: ITO-220AB
- Molding compound meets UL 94V-0 flammability rating
- Terminal: Matte tin plated leads, solderable per J-STD-002
- Mounting torque: 0.56 N·m maximum •
- Meet JESD 201 class 2 whisker test
- Polarity: As marked
- Weight: 1.82g (approximately)


KEY PARAMETERS				
PARAMETER	VALUE	UNIT		
I _F	5	А		
V _{RRM}	50 - 600	V		
I _{FSM}	70	А		
T _{J MAX}	150	°C		
Package	ITO-220AB			
Configuration	Dual d	lies		

	SYMBOL	SFF	SFF	SFF	SFF	SFF	SFF	SFF	SFF	UNIT
PARAMETER		501G	502G	503G	504G	505G	506G	507G	508G	
Marking code on the device		SFF	SFF	SFF	SFF	SFF	SFF	SFF	SFF	
Marking code on the device		501G	502G	503G	504G	505G	506G	507G	508G	
Repetitive peak reverse voltage	V _{RRM}	50	100	150	200	300	400	500	600	V
Reverse voltage, total rms value	V _{R(RMS)}	35	70	105	140	210	280	350	420	V
Forward current	I _F				Ę	5				А
Surge peak forward current, 8.3ms single half sine wave superimposed on rated load	I _{FSM}	70					A			
Junction temperature	TJ	-55 to +150		°C						
Storage temperature	T _{STG}				-55 to	+150				°C

1

THERMAL PERFORMANCE			
PARAMETER	SYMBOL	ТҮР	UNIT
Junction-to-case thermal resistance	R _{eJC}	5.5	°C/W

PARAMETER		CONDITIONS	SYMBOL	TYP	MAX	UNIT
(1)	SFF501G		V _F			
	SFF502G			-	0.98	V
	SFF503G					
	SFF504G					
Forward voltage per diode ⁽¹⁾	SFF505G	$I_F = 2.5A, T_J = 25^{\circ}C$			1.30	
	SFF506G			-	1.30	V
	SFF507G				4 70	
	SFF508G			-	1.70	V
Reverse current @ rated V _R per diode ⁽²⁾		T _J = 25°C	- I _R	-	10	μA
		T _J = 100°C		-	400	μA
	SFF501G	1MHz, V _R = 4.0V	CJ			
	SFF502G			70	-	pF
	SFF503G					
lunation concritones nor diada	SFF504G					
Junction capacitance per diode	SFF505G			50	-	pF
	SFF506G					
	SFF507G					
	SFF508G					
Reverse recovery time		IF = 0.5A, IR = 1.0A Irr = 0.25A	t _{rr}	-	35	ns

Notes:

1. Pulse test with PW = 0.3ms

2. Pulse test with PW = 30ms

ORDERING INFORMATION

ORDERING CODE ⁽¹⁾⁽²⁾	PACKAGE	PACKING
SFF5xG	ITO-220AB	50 / Tube
SFF5xGH	ITO-220AB	50 / Tube

Notes:

- 1. "x" defines voltage from 50V(SFF501G) to 600V(SFF508G)
- 2. "H" means AEC-Q101 qualified

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

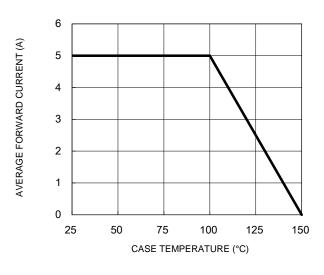
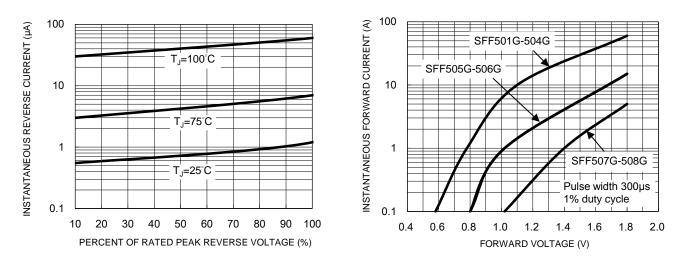
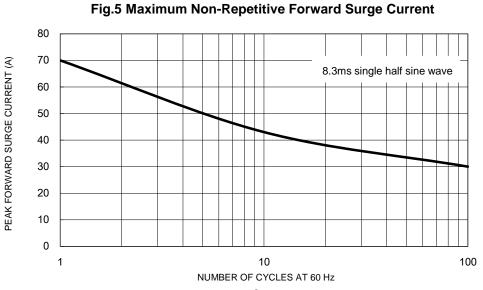
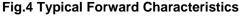
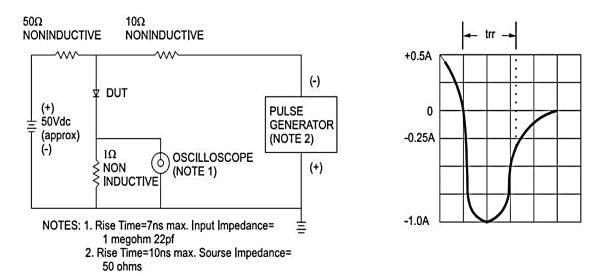




Fig.1 Forward Current Derating Curve


Fig.3 Typical Reverse Characteristics

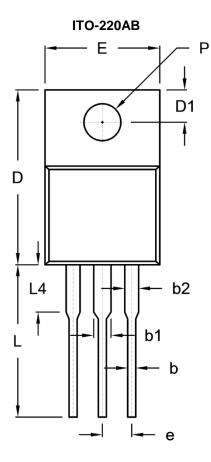
1000 CAPACITANCE (pF) SFF501G-504G SFF505G-508G 100 f=1.0MHz Vsig=50mVp-p 10 10 100 1000 1 REVERSE VOLTAGE (V)

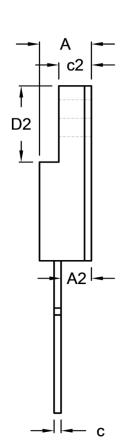
Fig.2 Typical Junction Capacitance



CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$




Fig.6 Reverse Recovery Time Characteristic and Test Circuit Diagram

SFF501G – SFF508G Taiwan Semiconductor

PACKAGE OUTLINE DIMENSIONS

DIM.	Unit	(mm)	Unit	(inch)
	Min.	Max.	Min.	Max.
A	4.30	4.70	0.169	0.185
A2	2.30	2.96	0.091	0.117
b	0.50	0.90	0.020	0.035
b1	-	1.80	-	0.071
b2	0.95	1.45	0.037	0.057
с	0.46	0.76	0.018	0.030
c2	2.50	3.16	0.098	0.124
D	14.80	15.50	0.583	0.610
D1	2.40	3.20	0.094	0.126
D2	6.30	6.90	0.248	0.272
E	9.60	10.30	0.378	0.406
е	2.41	2.67	0.095	0.105
L	12.60	13.80	0.496	0.543
L4	-	4.10	-	0.161
Р	3.00	3.40	0.118	0.134

MARKING DIAGRAM

雪別 GYWWF
P/N
→ + • • •

P/N	= Marking Code
G	= Green Compound
YWW	= Date Code
F	= Factory Code

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.